国产精品第三页在线观看_日韩中文在线欧美日韩一区二区_在线观看国产剧情麻豆精品_在线观看片成人免费视频_欧美又乱又伦观看_污污视频软件免费_超碰草棚最新加入_国产一区精品久久综合_国产精品色哟哟成人AV_日韩欧美中文日韩欧美色

天燕納米材料密度泛函計算軟件

軟件介紹:

SHINE-DFT是基于密度泛函理論的量子力學程序,在投影綴加波的方法上,采用均勻實空間網格表示電子波函數(shù),顯著的提高體系的伸縮性和計算的收斂性。有效原子軌道使用了更加精確的網格,大大提高計算的精度和靈活性。通過程序中的密度泛函理論(DFT)可以研究材料的基態(tài)性質,含時密度泛函理論(TDDFT)研究材料的激發(fā)態(tài)性質。

計算對象:

能夠計算金屬、半導體、氧化物或者多種結構混合的超晶格及其含有缺陷的原子等體系。

計算功能:

計算流程:

輸入輸出:

應用案例:

材料結構優(yōu)化:

描述:通過DFT方法優(yōu)化孤立的分子結構

分子軌道空間分布:

描述:分子軌道的HOMO-LUMO能級空間分布

吸收光譜性質:

描述:通過時間傳播和線性響應方法計算CH4分子的吸收光譜

光電子界面:

描述:光電子界面的計算對比:實驗 & DFT方法 & TDDFT方法

輸運性質:

描述:門壓控制下的電導和電子透射譜性質

參考文獻:

[1] Chen J, Thygesen K S, Jacobsen K W. Ab initio nonequilibrium quantum transport and forces with the real-space projector augmented wave method[J]. Physical Review B, 2012, 85(15): 155140.
[2] Kohn W and Sham L J 1965 Self-consistent equations including exchange and correlation effects Phys. Rev. 140 A1133–8
[3] Runge E and Gross E K U 1984 Density-functional theory for time-dependent systems Phys. Rev. Lett. 52 997–1000
[4] Phillips J C and Kleinman L 1959 New method for calculating wavefunctions in crystals and molecules Phys. Rev. 116 287–94
[5] Kleinman L and Bylander D M 1982 Efficacious form for model pseudopotentials Phys. Rev. Lett. 48 1425–8
[6] Vanderbilt D 1990 Soft self-consistent pseudopotentials in a generalized eigenvalue formalism Phys. Rev. B 41 7892–5
[7] Bl¨ochl P E 1994 Projector augmented-wave method Phys. Rev. B 50 17953–79
[8] Wimmer E, Krakauer H, Weinert M and Freeman A J 1981 Full-potential self-consistent linearized-augmented-plane-wave method for calculating the electronic structure of molecules and surfaces: O2 molecule Phys. Rev. B 24 864–75
[9] Payne M C, Teter M P, Allan D C, Arias T A and Joannopoulos J D 1992 Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients Rev. Mod. Phys. 64 1045–96
[10] Hehre W J, Stewart R F and Pople J A 1969 Self-consistent molecular-orbital methods. i. Use of Gaussian expansions of Slater-type atomic orbitals J. Chem. Phys. 51 2657–64
[11] Soler J M, Artacho E, Gale J D, Garc′?a A, Junquera J, Ordej′on P and S′anchez-Portal D 2002 The SIESTA method for ab initio order-N materials simulation J. Phys.: Condens. Matter 14 2745
[12] Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K and Scheffler M 2009 Ab initio molecular simulations with numeric atom-centered orbitals Comput. Phys. Commun. 180 2175–96
[13] Chelikowsky J R, Troullier N and Saad Y 1994 Finite-difference-pseudopotential method: electronic structure calculations without a basis Phys. Rev. Lett. 72 1240–3
[14] Beck T L 2000 Rev. Mod. Phys. 72 1041
[15] Junquera J, Paz O, S′ ′ anchez-Portal D and Artacho E 2001 Numerical atomic orbitals for linear-scaling calculations Phys. Rev. B 64 235111
[16] Briggs E L, Sullivan D J and Bernholc J 1996 Real-space multigrid based approach to large scale electronic structure calculations Phys. Rev. B 54 14362–75
[17] Enkovaara J E, Rostgaard C, Mortensen J J, et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method[J]. Journal of Physics: Condensed Matter, 2010, 22(25): 253202.
[18] Wang Y H, Huang H, Yu Z, et al. Modulating electron transport through single-molecule junctions by heteroatom substitution[J]. Journal of Materials Chemistry C, 2020, 8(20): 6826-6831.
[19] Huang J R, Huang H, Tao C P, et al. Controlling Contact Configuration of Carboxylic Acid-Based Molecular Junctions Through Side Group[J]. Nanoscale research letters, 2019, 14(1): 1-7.
[20] Wang Y H, Yan F, Li D F, et al. Enhanced Gating Performance of Single-Molecule Conductance by Heterocyclic Molecules[J]. The journal of physical chemistry letters, 12: 758-763.
[21] Huang B, Liu X, Yuan Y, et al. Controlling and observing sharp-valleyed quantum interference effect in single molecular junctions[J]. Journal of the American Chemical Society, 2018, 140(50): 17685-17690.
[22] Peng L L, Chen F, Hong Z W, et al. Precise tuning of single molecule conductance in an electrochemical environment[J]. Nanoscale, 2018, 10(15): 7026-7032.